Exam III Section I Part A — No Calculators

1. B p. 49

A. $f'(x) = 3x^2$. Then f'(0) = 0, producing a horizontal tangent.

B.
$$f'(x) = \frac{1}{3}x^{-2/3}$$
. Then $f'(0)$ is undefined and $\lim_{x\to 0} f'(x) = \infty$.

C. f itself is undefined at x = 0. There is no point on the curve there.

D. $f'(x) = \cos x$. Then f'(0) = 1, producing a non-vertical tangent.

E. $f'(x) = \sec^2 x$. Then f'(0) = 0, producing a horizontal tangent.

The only vertical tangent is for function (B).

2. C p. 49

$$\int_{0}^{5} \frac{dx}{\sqrt{1+3x}} = \frac{1}{3} \cdot \int_{0}^{5} \frac{3dx}{\sqrt{1+3x}} = \frac{2}{3}\sqrt{1+3x} \Big]_{0}^{5} = \frac{2}{3}(4-1) = 2$$

3. E p. 50

(A), (B), (C), and (D) are defined everywhere and have no discontinuities.

(E) is undefined at x = -1, and hence is discontinuous at x = -1.

4. E p. 50

$$\int_{0}^{2} e^{-x} dx = -e^{-x} \Big]_{0}^{2} = -\frac{1}{e^{2}} + 1 = 1 - \frac{1}{e^{2}}$$

5. C p. 50

$$g(x) = x + \cos x$$

By definition,
$$\lim_{h\to 0} \frac{g(x+h)-g(x)}{h} = g'(x)$$

Hence the value of the limit is $g'(x) = 1 - \sin x$.

6. C p. 51

$$\int_{0}^{4} \frac{2x}{x^{2} + 9} dx = \ln |x^{2} + 9| \Big]_{0}^{4} = \ln 25 - \ln 9 = \ln \Big[\frac{25}{9}\Big]$$

By definition,
$$g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$

$$= \lim_{h \to 0} \frac{4xh + 2h^2}{h}$$
 (Since $g(x+h) - g(x) = 4xh + 2h^2$)

$$= \lim_{h \to 0} (4x + 2h) = 4x$$

$$f(x) = x^{5} - 5x^{4} + 3$$

$$f'(x) = 5x^{4} - 20x^{3}$$

$$f''(x) = 20x^{3} - 60x^{2} = 20x^{2}(x - 3) \implies f''(x) > 0 \text{ if and only if } x > 3.$$

p. 52

Average Value =
$$\frac{1}{3+1} \int_{-1}^{3} (2+|x|) dx$$

= $\frac{1}{4} \left[\int_{-1}^{0} (2-x) dx + \int_{0}^{3} (2+x) dx \right] = \frac{1}{4} \left[\frac{5}{2} + \frac{7}{2} \right] = \frac{3}{2}$

$$v(t) = \frac{1}{1+t}$$

$$s(t) = \int v(t) dt = \ln|1+t| + C$$

$$s(0) = 5 \Rightarrow C = 5$$

$$s(t) = \ln|1+t| + 5 \Rightarrow s(3) = \ln(4) + 5$$

To find the inverse of the function $y = g(x) = \sqrt[3]{x-1}$, interchange x and Solution I. y and solve for y.

$$x = \sqrt[3]{y-1}$$
 \Rightarrow $x^3 = y-1$ \Rightarrow $y = x^3 + 1$.
Thus $f(x) = g^{-1}(x) = x^3 + 1$.
Then $f'(x) = 3x^2$.

Since f is the inverse of g, we have f(g(x)) = x. Solution II.

Differentiating gives: $f'(g(x)) \cdot g'(x) = 1$

Then
$$f'(g(x)) = \frac{1}{g'(x)}$$
.

Since $g(x) = (x-1)^{1/3}$, we know $g'(x) = \frac{1}{3}(x-1)^{-2/3}$.

Hence $f'(g(x)) = 3(x-1)^{2/3}$. Since $g(x) = (x-1)^{1/3}$, this is: $f'((x-1)^{1/3}) = 3(x-1)^{2/3}$. If we now substitute u for $(x-1)^{1/3}$, this is $f'(u) = 3u^2$.

12. A p. 53

Define the function G by
$$G(x) = \int_{0}^{x} \sqrt{1+t^3} dt$$
.

Then by the Second Fundamental Theorem,
$$G'(x) = \sqrt{1+x^3}$$
.

Note that
$$F(x) = G(\cos x)$$
, so we use the Chain Rule to determine $F'(x)$.

$$F'(x) = G'(\cos x) \cdot [-\sin x]$$

Then
$$F'(\frac{\pi}{2}) = G'(\cos \frac{\pi}{2}) \cdot (-\sin \frac{\pi}{2}) = G'(0) \cdot (-1) = -1.$$

13. C p. 53

The slope of y = 3x + 2 is m = 3. Find the first quadrant point on the curve $y = x^3 + k$ at which the slope is 3.

$$y' = 3x^2 \implies 3x^2 = 3 \implies x^2 = 1 \implies x = \pm 1$$

Since we need a first quadrant point, x = 1, and the point on the line is P(1,5). Then $y = x^3 + k$ must pass through (1,5), so k = 4.

14. D p. 53

False

II. From both above and below, as
$$y \to 1$$
, $\frac{dy}{dx} \to 0$.

True

III. At a given value of
$$y$$
, $\frac{dy}{dx}$ is constant.

True

15. B p. 54

$$\frac{d}{dx} [Arctan(3x)] = \frac{1}{1 + (3x)^2} \cdot 3 = \frac{3}{1 + 9x^2}$$

16. E p. 54

$$\lim_{x \to 1} \frac{x^2 + 2x - 3}{x^2 - 1} = \lim_{x \to 1} \frac{(x+3)(x-1)}{(x+1)(x-1)} = \lim_{x \to 1} \frac{x+3}{x+1} = \frac{4}{2} = 2$$

17. C p. 54

 $g\,$ is an antiderivative of $\,f.\,$ By the Fundamental Theorem,

$$\int_{a}^{b} g'(x) dx = g(b) - g(a). \text{ Thus }, \int_{2}^{3} f(x) dx = \int_{2}^{3} g'(x) = g(3) - g(2).$$

18. C p. 55

$$y = 2e^{\cos x}$$

$$\frac{dy}{dt} = 2e^{\cos x}(-\sin x)\frac{dx}{dt}$$

When
$$x = \frac{\pi}{2}$$
 and $\frac{dy}{dt} = 5$, then $5 = 2e^0(-1)\frac{dx}{dt}$. Hence $\frac{dx}{dt} = -\frac{5}{2}$.

19. A p. 55

$$\int_{1}^{2} \frac{dx}{x^{3}} = -\frac{1}{2x^{2}} \Big]_{1}^{2} = -\frac{1}{8} + \frac{1}{2} = \frac{3}{8}$$

20. D p. 55

The horizontal distance is the difference between the x-coordinates at a particular y.

Thus
$$D = x_2 - x_1 = \sqrt{y} - y$$
.

To maximize this distance function, differentiate and set equal to 0.

$$\frac{dD}{dy} = \frac{1}{2\sqrt{y}} - 1 = 0 \qquad \Rightarrow \qquad 2\sqrt{y} = 1$$

Thus the critical number is $y = \frac{1}{4}$.

The distance, for $y = \frac{1}{4}$, is $D = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$.

21. D p. 56

$$\int_{-1}^{1} f(x) dx = \int_{-1}^{0} f(x) dx + \int_{0}^{1} f(x) dx.$$

$$\int_{-1}^{0} f(x) dx = \frac{1}{2}$$
 (The area of the triangle)

$$\int_{0}^{1} f(x) dx = \int_{0}^{1} (1 + \sin \pi x) dx = x - \frac{1}{\pi} \cos \pi x \Big]_{0}^{1}$$
$$= \left[1 + \frac{1}{\pi} \right] - \left[0 - \frac{1}{\pi} \right] = 1 + \frac{2}{\pi}$$

The total of these two integrals is $\frac{3}{2} + \frac{2}{\pi}$

22. C p. 56

We use implicit differentiation to obtain $\frac{dy}{dx}$.

$$x^{2} + 2xy - 3y = 3$$

$$2x + 2y + 2x \frac{dy}{dx} - 3 \frac{dy}{dx} = 0$$

$$(2x - 3) \frac{dy}{dx} = -(2x + 2y)$$

$$\frac{dy}{dx} = -\frac{2x + 2y}{2x - 3}$$

We also need to find the y-coordinate
that pairs with
$$x = 2$$
.
 $x = 2 \implies 4 + 4y - 3y = 3$

$$x=2$$
 \Rightarrow $4+4y-3y=3$
 \Rightarrow $y=-1$

$$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}} \Big|_{(2,-1)} = \frac{4-2}{3-4} = -2$$

23. E p. 56

$$f(x) = x^{2/3} (5-2x)$$

$$f'(x) = \frac{2}{3} x^{-1/3} (5-2x) - 2x^{2/3}$$

$$= \frac{2}{3} x^{-1/3} [(5-2x) - 3x]$$

$$= \frac{2}{3} x^{-1/3} [5-5x]$$

$$= \frac{10}{3} x^{-1/3} (1-x)$$

This is positive when 0 < x < 1.

24. A p. 57

The volume of this solid formed by revolving about the x-axis is calculated using disks.

$$\pi \int_{0}^{2} (2x - x^{2})^{2} dx = \pi \int_{0}^{2} (4x^{2} - 4x^{3} + x^{4}) dx$$

$$= \pi \left[\frac{4x^{3}}{3} - x^{4} + \frac{x^{5}}{5} \right]^{2}$$

$$= \pi \left[\frac{32}{3} - 16 + \frac{32}{5} \right]$$

$$= \pi \frac{160 - 240 + 96}{15} = \frac{16\pi}{15}$$

p. 57 25. D

$$y = 2x^3 + 3x^2 + k$$

The constant k only affects the vertical location of the graph of the cubic. We must adjust k so that the relative maximum and minimum points are on opposite sides of the x-axis.

$$\frac{dy}{dx} = 6x^2 + 6x = 0$$

The critical numbers are 0 and -1.

y(0) = k and y(-1) = 1 + k.

We must have k < 0 and k+1 > 0. Thus -1 < k < 0.

26. В p. 57

To apply the Trapezoid Rule with n = 4 to approximate $\int f(x) dx$, we note that the width of each of the 4 subintervals is 1.

Then $T_4 = \frac{1}{2} [f(1) + 2 \cdot f(2) + 2 \cdot f(3) + 2 \cdot f(4) + f(5)]$. We read the function values from the graph.

This gives $T_4 = \frac{1}{2} [1 + 2 \cdot 3 + 2 \cdot 1 + 2 \cdot 2 + 3] = \frac{1}{2} [1 + 6 + 2 + 4 + 3] = 8.$

27. p. 58 C

The particle is moving to the right if the first derivative is positive.

 $x'(t) = 3\cos^2 t \cdot [-\sin t]$

Then x'(t) > 0 if $\sin t < 0$. This first happens if $\pi < t < \frac{3\pi}{2}$.

28. C p. 58

$$f''(x) = 2(x-2) \cdot (x-7)^3 + 3(x-7)^2 \cdot (x-2)^2$$

= $(x-2)(x-7)^2 [2(x-7) + 3(x-2)]$
= $(x-2)(x-7)^2 (5x-20) = 4(x-2)(x-7)^2 (x-4)$

f(x) has a point of inflection wherever f''(x) changes sign. This occurs at x = 2 and x = 4, but not at x = 7.

Exam III Section I Part B — Calculators Permitted

1. A p. 59

$$g'(x) = \cos(\sin x)$$

$$g''(x) = -\sin(\sin x) \cdot \cos x$$

$$g'(0) = \cos(\sin 0) = \cos 0 = 1$$
. Since $g'(0) > 0$, g is increasing at $x = 0$.

$$g''(0) = -\sin(\sin 0) \cdot \cos 0 = 0$$
. Then g is not concave down at $x = 0$, because g' is not decreasing at $x = 0$.

g is increasing at x = 0, so g cannot have a relative maximum there.

The only true statement is (I).

2. B p. 59

The average rate of change of a function f on the interval [1,3] is $\frac{f(3)-f(1)}{3-1}$. For this function,

$$\frac{f(3) - f(1)}{3 - 1} = \frac{\int_{0}^{3} f(t) dt - \int_{0}^{1} f(t) dt}{2}$$
$$= \frac{1}{2} \int_{1}^{3} f(t) dt \approx 0.23$$

3. B p. 60

The width of each of the three rectangles is 2. Since we are forming a sum using midpoints, we evaluate the function at x = 0, 2, and 4.

٠.	x	0	2	4
	f(x)	1	2.6458	7.8102

The midpoint approximation is: $M_3 = 2[1 + 2.6458 + 7.8102] = 22.912$

p. 60 4. D

Since the region between the graph of the curve and the x-axis consists of some area above the axis and some below, we must calculate two separate integrals.

$$\int_{0}^{1} f(x) dx = \int_{1}^{4} f(x) dx = 11.83$$

5. \mathbf{E} p. 60

Consider the function $y = \frac{\sin x}{x}$

It has a removable discontinuity at x = 0.

False

 $\lim \frac{\sin x}{x}$ II.

True

III. It has zeros at $x = \pm n\pi$, where n is an integer.

True

C 6. p. 61

The graph of y = f(x + 1) is the graph of f shifted one unit left.

IV

The graph of y = f(x) + 1 is the graph of f shifted 1 unit up.

H

The graph of y = f(-x)

is the graph of f reflected in the y-axis.

III

The graph of y = f'(x)

is parabolic.

The only solution that starts IV, II, III, V is answer (C).

7. C p. 61

Volumes of revolution about the x-axis are easily done by the disk (washer) method:

 $V = \pi \int_{a}^{b} [f(x)]^2 dx$. In this case, $f(x) = \sqrt{x}$.

$$V_{[0,4]} = \pi \int_{0}^{4} (\sqrt{x})^{2} dx = \pi \int_{0}^{4} x dx = \pi \cdot \left[\frac{x^{2}}{2}\right]_{0}^{4} = 8\pi$$

$$V_{[0,k]} = \pi \int_{0}^{k} (\sqrt{x})^{2} dx = \pi \int_{0}^{k} x dx = \pi \cdot \left[\frac{x^{2}}{2} \right]_{0}^{k} = \frac{\pi k^{2}}{2}$$

We need $\frac{\pi k^2}{2} = \frac{1}{2} (8\pi)$. Thus $\frac{\pi k^2}{2} = 4\pi$, so $k^2 = 8$, and $k = 2\sqrt{2} \approx 2.83$.

8. D p. 62

I. f is decreasing for -2 < x < -1 since f'(x) < 0 there.

False

II. f'(0) exists, so f is continuous at x = 0.

True

III. f'(x) has a minimum at x = -2, with f''(-2) = 0.

True

9. C p. 62

First determine the intersection points of the two functions.

$$-x^{2} + 2x + 4 = 1$$

$$0 = x^{2} - 2x - 3$$

$$0 = (x - 3)(x + 1)$$

$$x = -1, 3$$

The area is then

3 \int (top function – bottom function) dx.

$$\int_{-1}^{3} ((-x^2 + 2x + 4) - 1) dx = \int_{-1}^{3} (-x^2 + 2x + 3) dx \approx 10.667$$

$$f'(x) = g'(x) \Rightarrow f(x) - g(x) = C$$

 $f(1) = 2 \text{ and } g(1) = 3 \Rightarrow f(x) - g(x) = -1$

The graphs do not intersect, since the graph of f is always 1 unit below the graph of g.

11. C p. 63

I. Ave. rate of change
$$=\frac{f(3)-f(-2)}{3-(-2)}=\frac{2-(-1)}{3+2}=\frac{3}{5}$$
.

False

II. At the point (2,3), the tangent line is horizontal.

True

III. The 4-subinterval left-sum approximation to $\int_{-1}^{0} f(x) dx$

has common width 1 and function values -1, 0, 2, 3; the approximation is $1 \cdot [-1 + 0 + 2 + 3] = 4$.

True

12. B p. 63

The distance between the ships at time t is given by

 $D(t) = \sqrt{W^2(t) + S^2(t)}$. This can be more simply written $D = \sqrt{W^2 + S^2}$, where it is understood that all variables are functions of time t.

With all derivatives being with respect to time, we then have

$$D' = \frac{2W \cdot W' + 2S \cdot S'}{2\sqrt{W^2 + S^2}} = \frac{W \cdot W' + S \cdot S'}{\sqrt{W^2 + S^2}}$$

When t = 1, we read from the graphs that W = 5 and S = 4.

We can also approximate the slopes of the two curves at the points where t = 1.

$$W'(1) \approx \frac{1}{2} \text{ and } S'(1) \approx 1.$$

Thus, D'(1) =
$$\frac{5 \cdot (1/2) + 41}{\sqrt{5^2 + 4^2}} \approx 1$$

$$x_1'(t) = -2\sin(2t)$$

$$x_2'(t) = \frac{1}{2}e^{(t-3)/2}$$

Graph these two velocity functions. There are four intersection points.

14. C p. 64

The line x-2y+9=0 has slope $m=\frac{1}{2}$. Since it is parallel to the line through (1,f(1))

and (5, f(5)), we know that
$$\frac{f(5) - f(1)}{5 - 1} = \frac{1}{2}$$

Since f(1) = 2, we then have: $\frac{f(5) - 2}{4} = \frac{1}{2}$

Thus
$$f(5) - 2 = 2$$
, so $f(5) = 4$.

[Note: The differentiability of f, the point (3,6), and the tangency of the line to the graph of f are all irrelevant.]

15. p. 65 Α

Remember to use the Chain Rule.

$$\frac{d}{dx} f(x^2) = f'(x^2) \cdot 2x = 2x \cdot g(x^2)$$

$$\frac{d}{dx} f(x^2) = f'(x^2) \cdot 2x = 2x \cdot g(x^2)$$

$$\frac{d^2}{dx^2} f(x^2) = 2g(x^2) + 2x \cdot g'(x^2) \cdot 2x$$

$$= 2g(x^2) + 4x^2 f(3x^2)$$

16. В p. 65

Separate variables in the differential equation.

$$\frac{dy}{dx} = 4x\sqrt{y} \implies \frac{dy}{\sqrt{y}} = 4x dx$$

$$\Rightarrow 2\sqrt{y} = 2x^2 + C$$

Since the point (1,9) is on the graph, we obtain

$$2\sqrt{9} = 2 \cdot 1^2 + C$$

$$6 = 2 + C$$

$$C = 4$$

Thus $2\sqrt{y} = 2x^2 + 4$, or $\sqrt{y} = x^2 + 2$.

Then when x = 0, we have $\sqrt{y} = 2$, so y = 4.

17. E p. 65

Differentiate implicitly, being careful to use the Product Rule on the right-hand side.

$$e^{y} = xy \qquad \Rightarrow \qquad e^{y} \cdot \frac{dy}{dx} = x \cdot \frac{dy}{dx} + y$$

$$\Rightarrow \qquad (e^{y} - x) \frac{dy}{dx} = y$$

$$\Rightarrow \qquad \frac{dy}{dx} = \frac{y}{e^{y} - x}$$

This result is not one of the proposed solutions, so we must do more. Since in the original equation, $e^y = xy$, we can replace the e^y in the denominator. Then we obtain $\frac{dy}{dx} = \frac{y}{xy - x}$.

Exam III Section II Part A — Calculators Permitted

1. p. 67

The curves intersect in the first quadrant at x = 0.83596017. Denote that number by a.

1: Correct limits in an integral in (a),(b), or (c)

(a)

Then the area is $\int_{0}^{a} (3\cos x - e^{x^2}) dx \approx 1.146$

2: { 1: integrand 1: answer

(b) The volume of the solid of revolution about the x-axis is done with disks:

 $V_x = \pi \int_0^a \left(9\cos^2 - e^{2x^2}\right) dx$, where a is the number from part (a).

2: integrand and constant 1:answer

(c) Since cross sections taken perpendicular to the x-axis are squares, the cross-sectional area of the square occurring at coordinate x is $(3\cos x - e^{x^2})^2$. Then the volume of the solid described is $V = \int_0^a (3\cos x - e^{x^2})^2 dx$, where a again is the number found above.

3: $\begin{cases} 2: \text{integrand} \\ 1: \text{answer} \end{cases}$

2. p. 68

(a)

$$f(x) = \ln(x+1) - \sin^2 x$$
 for $0 \le x \le 3$.
 $y = 0 \implies \ln(x+1) - \sin^2 x = 0$

The function is pictured to the left. It has three zeros on [0,3].

With the capabilities of the graphing calculator, the zeros are found to be at

$$\mathbf{x} = \mathbf{0}$$

$$x = 0.964$$

$$x = 1.684$$

- (b) Consider the graph of the derivative of f: $f'(x) = \frac{1}{x+1} 2\sin x \cos x$. This derivative function is nonnegative valued on the intervals (0. 0.398) and (1.351, 3). Hence f is increasing there.
- (c) The absolute maximum and absolute minimum values occur at either a critical point or an endpoint. The first derivative $f'(x) = \frac{1}{x+1} 2\sin x \cos x$ has zeros at x = 0.398 and x = 1.351. At these critical points we have f(0.398) = 0.184 and f(1.351) = -0.098. At the endpoints we have f(0) = 0 and f(3) = 1.366. Therefore, on the interval [0, 3], the function's absolute minimum value is -0.098 and its absolute maximum value is 1.366.

3: three x - intercepts

$$3: \begin{cases} 1: f'(x) \ge 0 \\ 2: \text{ answer} \end{cases}$$

- 1: identifies critical numbers and endpts
 3: as candidates
 - 1: answer
 - 1: justification

3. p. 69

(a)

$$f(x) = 4 - x^2$$
 \Rightarrow $f'(x) = -2x$

At the point $P(p,4-p^2)$, the tangent line has a slope of m = -2p. Hence an equation of the tangent line is:

$$y - (4-p^2) = -2p(x-p)$$

This simplifies to $y = -2px + p^2 + 4$.

The y-intercept (point Y) is $(0, p^2 + 4)$.

The x-intercept (point X) is $(\frac{p^2+4}{2p}, 0)$.

The area of the triangle is $A(p) = \frac{1}{2}(p^2 + 4)\left[\frac{p^2 + 4}{2p}\right]$

Then $A(2) = \frac{1}{2}(8)(2) = 8$.

(b)
$$A(p) = \frac{(p^2 + 4)^2}{4p}$$
.
Then $A'(p) = \frac{4p \cdot 2(p^2 + 4) \cdot 2p - (p^2 + 4)^2 \cdot 4}{16p^2} = \frac{4p^4 + 16p^2 - p^4 - 8p^2 - 16}{4p^2}$

$$= \frac{3p^4 + 8p^2 - 16}{4p^2}$$

$$= \frac{(3p^2 - 4)(p^2 + 4)}{4p^2}$$
The existing boundary of the function A are standard A .

The critical numbers of the function A are at $p = \pm \frac{2}{\sqrt{3}}$.

The only critical number in the interval (0,2) is $p = \frac{2}{\sqrt{3}} \approx 1.155$.

A'(1) < 0 and A'(2) > 0, therefore by the First Derivative test, A(1.155) is a local minimum, and since there are no other critical points in the interval (0,2), A(1.155) is the absolute minimum. The domain of A is (0, 2]. Since $\lim_{p\to 0} A(p) = \infty$, there is no maximum and p = 1.155 is the minimum.

5:
$$\begin{cases} 2: A'(p) \\ 2: \text{candidates for} \\ \text{minimum} \\ 1: \text{answer} \end{cases}$$

Exam III Section II Part B — No Calculators

4. p. 70

(a)
$$f(x) = x^3 + px^2 + qx$$
 \Rightarrow $f'(x) = 3x^2 + 2px + q$ \Rightarrow $f''(x) = 6x + 2p$

$$\left\{ \begin{array}{c} f(-1) = -8 \\ f'(-1) = 12 \end{array} \right\} \quad \Rightarrow \quad \left\{ \begin{array}{c} -8 = -1 + p - q \\ 12 = 3 - 2p + q \end{array} \right.$$

When we add these two equations, we obtain 4 = 2 - p. Thus p = -2. Substituting this value into one of the equations, we find that q = 5.

(b) If the graph of f is to have a change in concavity at x = 2, then f''(2) = 0 and f''(x) changes its sign at x = 2.

$$f''(2) = 12 + 2p = 0 \implies p = -6$$

Then f''(x) = 6x - 12 = 6(x - 2). This <u>does</u> have a sign change at x = 2.

- 3: $\begin{cases} 1: f''(x) \\ 1: f''(2) \\ 1: \text{answer} \end{cases}$
- (c) For f to be increasing everywhere, we must have f'(x) > 0 for all x. Then $3x^2 + 2px + q > 0$ for all x.
 - f'(x) is a quadratic function, opening upward.
 - f'(x) will be positive valued \Leftrightarrow f has no zeros
 - \Leftrightarrow the discriminant of f is less than 0

$$\Leftrightarrow$$
 $4p^2 - 12q < 0$

$$\Leftrightarrow$$
 p² < 3q.

- 5. p. 71
 - (a) $s(6) = \int_{0}^{6} v(t) dt = \int_{0}^{4} v(t) dt + \int_{4}^{6} v(t) dt = 5 2 = 3$ This evaluation is obtained by counting areas.

- 3: $\begin{cases} 1: \int_0^4 v(t) dt \\ 1: \int_4^6 v(t) dt \\ 1: \text{answer} \end{cases}$
- (b) At t = 4, the velocity changes from being positive to being negative. Hence the car's distance from A changes from being in an increasing state to decreasing. That is, the car's direction changes.
- $3:\begin{cases} 1: answer \\ 2: justification \end{cases}$

Since the acceleration is the derivative of the velocity, we need to plot a function whose values are the <u>slopes</u> of the given velocity function.

3 : graph

- 6. p. 72
 - (a) $y^3 3xy = 2$ Differentiating, we obtain $3y^2 \frac{dy}{dx} - 3y - 3x \frac{dy}{dx} = 0$. $\frac{dy}{dx}(3y^2 - 3x) = 3y$

$$\frac{dy}{dx} - 3y - 3x \frac{dy}{dx} = 0.$$

$$\frac{dy}{dx} (3y^2 - 3x) = 3y$$

$$\frac{dy}{dx} = \frac{3y}{3y^2 - 3x} = \frac{y}{y^2 - x}$$

(b) At the point (1,2), $\frac{dy}{dx}$ has the value $\frac{2}{4-1} = \frac{2}{3}$. Therefore the tangent line has the equation $y-2=\frac{2}{3}(x-1)$. $y(1.3)=2+\frac{2}{3}(1.3-1)=2.2$

2:
$$\begin{cases} 1: \text{ implicit diff} \\ 1: \text{ solves for } \frac{dy}{dx} \end{cases}$$

(c) $\frac{d^2y}{dx^2} = \frac{(y^2 - x) \cdot \frac{dy}{dx} - y(2y\frac{dy}{dx} - 1)}{(y^2 - x)^2}$

$$\frac{d^2y}{dx^2}\Big|_{(1,2)} = \frac{(4-1)\cdot\frac{2}{3}-8\cdot\frac{2}{3}+2}{9} = \frac{4-\frac{16}{3}}{9} = -\frac{4}{27}$$

$$3: \begin{cases} 2: \frac{d^2y}{dx^2} \\ 1: a \text{nswe} \end{cases}$$

(d) Since $\frac{d^2y}{dx^2}$ < 0 at the point (1, 2), the graph is concave down and the tangent line lies above the curve. Hence, the point (1.3, 2.2) is an overestimate.