Exam III
 Section I
 Part A - No Calculators

1. B p. 49
A. $\quad f^{\prime}(x)=3 x^{2}$. Then $f^{\prime}(0)=0$, producing a horizontal tangent.
B. $\quad f^{\prime}(x)=\frac{1}{3} x^{-2 / 3}$. Then $f^{\prime}(0)$ is undefined and $\lim _{x \rightarrow 0} f^{\prime}(x)=\infty$.
C. f itself is undefined at $x=0$. There is no point on the curve there.
D. $f^{\prime}(x)=\cos x$. Then $f^{\prime}(0)=1$, producing a non-vertical tangent.
E. $f^{\prime}(x)=\sec ^{2} x$. Then $f^{\prime}(0)=0$, producing a horizontal tangent.

The only vertical tangent is for function (B).
2. C p. 49
$\left.\int_{0}^{5} \frac{\mathrm{dx}}{\sqrt{1+3 x}}=\frac{1}{3} \cdot \int_{0}^{5} \frac{3 \mathrm{dx}}{\sqrt{1+3 x}}=\frac{2}{3} \sqrt{1+3 x}\right]_{0}^{5}=\frac{2}{3}(4-1)=2$
3. E p. 50
(A), (B), (C), and (D) are defined everywhere and have no discontinuities.
(E) is undefined at $\mathrm{x}=-1$, and hence is discontinuous at $\mathrm{x}=-1$.
4. E p. 50
$\left.\int_{0}^{2} e^{-x} d x=-e^{-x}\right]_{0}^{2}=-\frac{1}{e^{2}}+1=1-\frac{1}{e^{2}}$
5. C p. 50
$g(x)=x+\cos x$
By definition, $\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}=g^{\prime}(x)$
Hence the value of the limit is $g^{\prime}(x)=1-\sin x$.
6. C p. 51
$\left.\int_{0}^{4} \frac{2 x}{x^{2}+9} d x=\ln \left|x^{2}+9\right|\right]_{0}^{4}=\ln 25-\ln 9=\ln \left[\frac{25}{9}\right]$
7. D p. 51

By definition, $\quad g^{\prime}(x)=\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{4 x h+2 h^{2}}{h} \quad\left(\text { Since } g(x+h)-g(x)=4 x h+2 h^{2}\right) \\
& =\lim _{h \rightarrow 0}(4 x+2 h)=4 x
\end{aligned}
$$

8. B p. 51
$f(x)=x^{5}-5 x^{4}+3$
$f^{\prime}(x)=5 x^{4}-20 x^{3}$
$f^{\prime \prime}(x)=20 x^{3}-60 x^{2}=20 x^{2}(x-3) \quad \Rightarrow \quad f^{\prime \prime}(x)>0$ if and only if $x>3$.
9. $\not \subset \quad$ p. 52

Average Value $=\frac{1}{3+1} \int_{-1}^{3}(2+|x|) d x$
$\quad=\frac{1}{4}\left[\int_{-1}^{0}(2-x) d x+\int_{0}^{3}(2+x) d x\right]=\frac{1}{4}\left[\frac{5}{2}+\frac{7}{2}\right]=\frac{3}{2}$

10. E p. 52

$$
\begin{array}{ll}
v(t)=\frac{1}{1+t} & s(t)=\int v(t) d t=\ln |1+t|+C \\
s(t)=\ln |1+t|+5 & \Rightarrow \quad s(0)=5 \quad \Rightarrow \quad C=5
\end{array}
$$

11. A p. 52

Solution I. To find the inverse of the function $y=g(x)=\sqrt[3]{x-1}$, interchange x and y and solve for y .
$x=\sqrt[3]{y-1} \Rightarrow x^{3}=y-1 \Rightarrow y=x^{3}+1$.
Thus $f(x)=g^{-1}(x)=x^{3}+1$.
Then $f^{\prime}(x)=3 x^{2}$.
Solution II. Since f is the inverse of g, we have $f(g(x))=x$.
Differentiating gives: $f^{\prime}(g(x)) \cdot g^{\prime}(x)=1$
Then $f^{\prime}(g(x))=\frac{1}{g^{\prime}(x)}$.
Since $g(x)=(x-1)^{1 / 3}$, we know $g^{\prime}(x)=\frac{1}{3}(x-1)^{-2 / 3}$.
Hence $f^{\prime}(g(x))=3(x-1)^{2 / 3}$.
Since $g(x)=(x-1)^{1 / 3}$, this is: $f^{\prime}\left((x-1)^{1 / 3}\right)=3(x-1)^{2 / 3}$.
If we now substitute u for $(x-1)^{1 / 3}$, this is $f^{\prime}(u)=3 u^{2}$.
12. A p. 53

Define the function G by $G(x)=\int_{0}^{x} \sqrt{1+t^{3}} d t$.
Then by the Second Fundamental Theorem, $G^{\prime}(x)=\sqrt{1+x^{3}}$.
Note that $F(x)=G(\cos x)$, so we use the Chain Rule to determine $F^{\prime}(x)$.
$F^{\prime}(x)=G^{\prime}\left(\cos ^{\prime} x\right) \cdot[-\sin x]$
Then $F^{\prime}\left(\frac{\pi}{2}\right)=G^{\prime}\left(\cos \frac{\pi}{2}\right) \cdot\left(-\sin \frac{\pi}{2}\right)=G^{\prime}(0) \cdot(-1)=-1$.
13. C p. 53

The slope of $y=3 x+2$ is $m=3$. Find the first quadrant point on the curve $y=x^{3}+k$ at which the slope is 3 .
$y^{\prime}=3 x^{2} \quad \Rightarrow \quad 3 x^{2}=3 \quad \Rightarrow \quad x^{2}=1 \quad \Rightarrow \quad x= \pm 1$
Since we need a first quadrant point, $x=1$, and the point on the line is $P(1,5)$. Then $y=x^{3}+k$ must pass through $(1,5)$, so $k=4$.
14. D p. 53
I. A solution containing $(0,2)$ never gets below the y-value of 1 .

False
II. From both above and below, as $y \rightarrow 1, \frac{d y}{d x} \rightarrow 0$.

True
III. At a given value of $y, \frac{d y}{d x}$ is constant.

True
15. B p. 54
$\frac{\mathrm{d}}{\mathrm{dx}}[\operatorname{Arctan}(3 \mathrm{x})]=\frac{1}{1+(3 \mathrm{x})^{2}} \cdot 3=\frac{3}{1+9 \mathrm{x}^{2}}$
16. E p. 54
$\lim _{x \rightarrow 1} \frac{x^{2}+2 x-3}{x^{2}-1}=\lim _{x \rightarrow 1} \frac{(x+3)(x-1)}{(x+1)(x-1)}=\lim _{x \rightarrow 1} \frac{x+3}{x+1}=\frac{4}{2}=2$
17. C p. 54
g is an antiderivative of f . By the Fundamental Theorem,
$\int_{a}^{b} g^{\prime}(x) d x=g(b)-g(a)$. Thus, $\int_{2}^{3} f(x) d x=\int_{2}^{3} g^{\prime}(x)=g(3)-g(2)$.
18. C p. 55
$y=2 e^{\cos x}$
$\frac{d y}{d t}=2 e^{\cos x}(-\sin x) \frac{d x}{d t}$
When $x=\frac{\pi}{2}$ and $\frac{d y}{d t}=5$, then $5=2 e^{0}(-1) \frac{d x}{d t}$. Hence $\frac{d x}{d t}=-\frac{5}{2}$.
19. A p. 55
$\left.\int_{1}^{2} \frac{\mathrm{dx}}{\mathrm{x}^{3}}=-\frac{1}{2 \mathrm{x}^{2}}\right]_{1}^{2}=-\frac{1}{8}+\frac{1}{2}=\frac{3}{8}$
20. D p. 55

$\frac{d D}{d y}=\frac{1}{2 \sqrt{y}}-1=0 \quad \Rightarrow \quad 2 \sqrt{y}=1$

Thus the critical number is $y=\frac{1}{4}$.
The distance, for $y=\frac{1}{4}$, is $D=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}$.
21. D p. 56

$$
\begin{aligned}
& \int_{-1}^{1} f(x) d x=\int_{-1}^{0} f(x) d x+\int_{0}^{1} f(x) d x . \\
& \int_{-1}^{0} f(x) d x=\frac{1}{2} \quad \text { (The area of the triangle) }
\end{aligned}
$$

$$
\begin{aligned}
\int_{0}^{1} f(x) d x=\int_{0}^{1}(1+\sin \pi x) d x & \left.=x-\frac{1}{\pi} \cos \pi x\right]^{1} \\
& =\left[1+\frac{1}{\pi}\right]-\left[0-\frac{1}{\pi}\right]=1+\frac{2}{\pi}
\end{aligned}
$$

The total of these two integrals is $\frac{3}{2}+\frac{2}{\pi}$.
22. C p. 56

We use implicit differentiation to obtain $\frac{d y}{d x}$.
$x^{2}+2 x y-3 y=3$
$2 x+2 y+2 x \frac{d y}{d x}-3 \frac{d y}{d x}=0$
$(2 x-3) \frac{d y}{d x}=-(2 x+2 y)$

$$
\frac{d y}{d x}=-\frac{2 x+2 y}{2 x-3}
$$

$$
\left.\Rightarrow \quad \frac{d y}{d x}\right|_{(2,-1)}=\frac{4-2}{3-4}=-2
$$

23. E p. 56

$$
\begin{aligned}
f(x) & =x^{2 / 3}(5-2 x) \\
f^{\prime}(x) & =\frac{2}{3} x^{-1 / 3}(5-2 x)-2 x^{2 / 3} \\
& =\frac{2}{3} x^{-1 / 3}[(5-2 x)-3 x] \\
& =\frac{2}{3} x^{-1 / 3}[5-5 x] \\
& =\frac{10}{3} x^{-1 / 3}(1-x)
\end{aligned}
$$

This is positive when $0<x<1$.
24. A p. 57

The volume of this solid formed by revolving about the x -axis is calculated using disks.

$$
\begin{aligned}
\pi \int_{0}^{2}\left(2 x-x^{2}\right)^{2} d x & =\pi \int_{0}^{2}\left(4 x^{2}-4 x^{3}+x^{4}\right) d x \\
& =\pi\left[\frac{4 x^{3}}{3}-x^{4}+\frac{x^{5}}{5}\right]^{2} \\
& =\pi\left[\frac{32}{3}-16+\frac{32}{5}\right] \\
& =\pi \frac{160-240+96}{15}=\frac{16 \pi}{15}
\end{aligned}
$$

25. D p. 57

$y=2 x^{3}+3 x^{2}+k$
The constant k only affects the vertical location of the graph of the cubic. We must adjust k so that the relative maximum and minimum points are on opposite sides of the x -axis.
$\frac{d y}{d x}=6 x^{2}+6 x=0$

The critical numbers are 0 and -1 .
$y(0)=k$ and $y(-1)=1+k$.
We must have $\mathrm{k}<0$ and $\mathrm{k}+1>0$. Thus $-1<\mathrm{k}<0$.
26. B p. 57

To apply the Trapezoid Rule with $n=4$ to approximate $\int_{1}^{5} f(x) d x$, we note that the width of each of the 4 subintervals is 1 .
Then $T_{4}=\frac{1}{2}[f(1)+2 \cdot f(2)+2 \cdot f(3)+2 \cdot f(4)+f(5)]$.
We read the function values from the graph.
This gives $\mathrm{T}_{4}=\frac{1}{2}[1+2 \cdot 3+2 \cdot 1+2 \cdot 2+3]=\frac{1}{2}[1+6+2+4+3]=8$.
27. C p. 58

The particle is moving to the right if the first derivative is positive.
$x^{\prime}(t)=3 \cos ^{2} t \cdot[-\sin t]$
Then $x^{\prime}(t)>0$ if $\sin t<0$. This first happens if $\pi<t<\frac{3 \pi}{2}$.
28. C p. 58

$$
\begin{aligned}
f^{\prime \prime}(x) & =2(x-2) \cdot(x-7)^{3}+3(x-7)^{2} \cdot(x-2)^{2} \\
& =(x-2)(x-7)^{2}[2(x-7)+3(x-2)] \\
& =(x-2)(x-7)^{2}(5 x-20)=4(x-2)(x-7)^{2}(x-4)
\end{aligned}
$$

$f(x)$ has a point of inflection wherever $f^{\prime \prime}(x)$ changes sign. This occurs at $x=2$ and $x=4$, but not at $x=7$.

Exam III
 Section I
 Part B - Calculators Permitted

1. A p. 59
$g^{\prime}(x)=\cos (\sin x)$
$g^{\prime \prime}(x)=-\sin (\sin x) \cdot \cos x$
$g^{\prime}(0)=\cos (\sin 0)=\cos 0=1$. Since $g^{\prime}(0)>0, g$ is increasing at $x=0$.
$g^{\prime \prime}(0)=-\sin (\sin 0) \cdot \cos 0=0$. Then g is not concave down at $x=0$, because g^{\prime} is not decreasing at $x=0$.
g is increasing at $x=0$, so g cannot have a relative maximum there.
The only true statement is (I).
2. B p. 59

The average rate of change of a function f on the interval $[1,3]$ is $\frac{f(3)-f(1)}{3-1}$.
For this function,

$$
\begin{aligned}
\frac{f(3)-f(1)}{3-1} & =\frac{\int_{0}^{3} f(t) d t-\int_{0}^{1} f(t) d t}{2} \\
& =\frac{1}{2} \int_{1}^{3} f(t) d t \approx 0.23
\end{aligned}
$$

3. B p. 60

The width of each of the three rectangles is 2 . Since we are forming a sum using midpoints, we evaluate the function at $x=0,2$, and 4 .

The midpoint approximation is:
$\mathrm{M}_{3}=2[1+2.6458+7.8102]=22.912$
4. D p. 60

Since the region between the graph of the curve and the x-axis consists of some area above the axis and some below, we must calculate two separate integrals.

$$
\int_{0}^{1} f(x) d x \theta \int_{1}^{4} f(x) d x=11.83
$$

5. E p. 60

Consider the function $y=\frac{\sin x}{x}$.
I. It has a removable discontinuity at $\mathrm{x}=0$.

False
II. $\lim _{x \rightarrow \infty} \frac{\sin x}{x}=0$.
III. It has zeros at $x= \pm n \pi$, where n is an integer.

True
True
6. C p. 61

The graph of $y=f(x+1)$ is the graph of f shifted one unit left.
The graph of $y=f(x)+1$ is the graph of f shifted 1 unit up.
The graph of $y=f(-x) \quad$ is the graph of f reflected in the y-axis.
The graph of $y=f^{\prime}(x) \quad$ is parabolic.
The only solution that starts IV, II, III, V is answer (C).
7. C p. 61

Volumes of revolution about the x-axis are easily done by the disk (washer) method:
$V=\pi \int_{a}^{b}[f(x)]^{2} d x$. In this case, $f(x)=\sqrt{x}$.
$V_{[0,4]}=\pi \int_{0}^{4}(\sqrt{x})^{2} d x=\pi \int_{0}^{4} x d x=\pi \cdot\left[\frac{x^{2}}{2}\right]_{0}^{4}=8 \pi$
$V_{[0, k]}=\pi \int_{0}^{k}(\sqrt{x})^{2} d x=\pi \int_{0}^{k} x d x=\pi \cdot\left[\frac{x^{2}}{2}\right]_{0}^{k}=\frac{\pi k^{2}}{2}$
We need $\frac{\pi \mathrm{k}^{2}}{2}=\frac{1}{2}(8 \pi)$. Thus $\frac{\pi \mathrm{k}^{2}}{2}=4 \pi$, so $\mathrm{k}^{2}=8$, and $\mathrm{k}=2 \sqrt{2} \approx 2.83$.
8. D p. 62
I. f is decreasing for $-2<x<-1$ since $f^{\prime}(x)<0$ there. False
II. $f^{\prime}(0)$ exists, so f is continuous at $x=0$. True
III. $f^{\prime}(x)$ has a minimum at $x=-2$, with $f^{\prime \prime}(-2)^{\prime}=0$. True
9. $C \quad$ p. 62

First determine the intersection points of the two functions.

$$
\begin{aligned}
-x^{2}+2 x+4 & =1 \\
0 & =x^{2}-2 x-3 \\
0 & =(x-3)(x+1) \\
x & =-1,3
\end{aligned}
$$

The area is then
\int_{-1}^{3} (top function-bottom function) $d x$.
$\int_{-1}^{3}\left(\left(-x^{2}+2 x+4\right)-1\right) d x=\int_{-1}^{3}\left(-x^{2}+2 x+3\right) d x=10.667$
10. C p. 62
$f^{\prime}(x)=g^{\prime}(x) \quad \Rightarrow \quad f(x)-g(x)=C$
$f(1)=2$ and $g(1)=3 \Rightarrow f(x)-g(x)=-1$
The graphs do not intersect, since the graph of f is always 1 unit below the graph of g.
11. C p. 63
I. Ave. rate of change $=\frac{f(3)-f(-2)}{3-(-2)}=\frac{2-(-1)}{3+2}=\frac{3}{5}$.

False
II. At the point $(2,3)$, the tangent line is horizontal. True
III. The 4-subinterval left-sum approximation to $\int_{-1} f(x) d x$ has common width 1 and function values $-1,0,2,3$; the approximation is $1 \cdot[-1+0+2+3]=4$.

True
12. \quad p. 63

The distance between the ships at time t is given by
$D(t)=\sqrt{W^{2}(t)+S^{2}(t)}$. This can be more simply written $D=\sqrt{W^{2}+S^{2}}$, where it is understood that all variables are functions of time t.
With all derivatives being with respect to time, we then have
$D^{\prime}=\frac{2 W \cdot W^{\prime}+2 S \cdot S^{\prime}}{2 \sqrt{W^{2}+S^{2}}}=\frac{W \cdot W^{\prime}+S \cdot S^{\prime}}{\sqrt{W^{2}+S^{2}}}$.
When $t=1$, we read from the graphs that $W=5$ and $S=4$.
We can also approximate the slopes of the two curves at the points where $t=1$.
$W^{\prime}(1) \approx \frac{1}{2}$ and $S^{\prime}(1) \approx 1$.
Thus, $\mathrm{D}^{\prime}(1)=\frac{5 \cdot(1 / 2)+41}{\sqrt{5^{2}+4^{2}}} \approx 1$.
13. E
p. 64
$x_{1}^{\prime}(t)=-2 \sin (2 t)$
$x_{2}^{\prime}(t)=\frac{1}{2} e^{(t-3) / 2}$
Graph these two velocity functions. There are four intersection points.

14. C p. 64

The line $x-2 y+9=0$ has slope $m=\frac{1}{2}$. Since it is parallel to the line through $(1, f(1))$ and $(5, f(5))$, we know that $\frac{f(5)-f(1)}{5-1}=\frac{1}{2}$.
Since $f(1)=2$, we then have: $\frac{f(5)-2}{4}=\frac{1}{2}$.
Thus $f(5)-2=2$, so $f(5)=4$.
[Note: The differentiability of f, the point $(3,6)$, and the tangency of the line to the graph of f are all irrelevant.]
15. A p. 65

Remember to use the Chain Rule.

$$
\begin{aligned}
\frac{d}{d x} f\left(x^{2}\right) & =f^{\prime}\left(x^{2}\right) \cdot 2 x=2 x \cdot g\left(x^{2}\right) \\
\frac{d^{2}}{d x^{2}} f\left(x^{2}\right) & =2 g\left(x^{2}\right)+2 x \cdot g^{\prime}\left(x^{2}\right) \cdot 2 x \\
& =2 g\left(x^{2}\right)+4 x^{2} f\left(3 x^{2}\right)
\end{aligned}
$$

16. B p. 65

Separate variables in the differential equation.

$$
\begin{aligned}
\frac{d y}{d x}=4 x \sqrt{y} & \Rightarrow \quad \frac{d y}{\sqrt{y}}=4 x d x \\
& \Rightarrow \quad 2 \sqrt{y}=2 x^{2}+C
\end{aligned}
$$

Since the point $(1,9)$ is on the graph, we obtain

$$
\begin{aligned}
2 \sqrt{9} & =2 \cdot 1^{2}+C \\
6 & =2+C \\
C & =4
\end{aligned}
$$

Thus $2 \sqrt{y}=2 x^{2}+4$, or $\sqrt{y}=x^{2}+2$.
Then when $x=0$, we have $\sqrt{y}=2$, so $y=4$.
17. E p. 65

Differentiate implicitly, being careful to use the Product Rule on the right-hand side.

$$
\begin{aligned}
e^{y}=x y & \Rightarrow e^{y} \cdot \frac{d y}{d x}=x \cdot \frac{d y}{d x}+y \\
& \Rightarrow\left(e^{y}-x\right) \frac{d y}{d x}=y \\
& \Rightarrow \frac{d y}{d x}=\frac{y}{e^{y}-x}
\end{aligned}
$$

This result is not one of the proposed solutions, so we must do more.
Since in the original equation, $e^{y}=x y$, we can replace the e^{y} in the denominator. Then we obtain $\frac{d y}{d x}=\frac{y}{x y-x}$.

Exam III
 Section II
 Part A - Calculators Permitted

1. p. 67

The curves intersect in the first quadrant at $\mathrm{x}=0.83596017$.
Denote that number by a.
(a)

Then the area is $\int_{0}^{a}\left(3 \cos x-e^{x^{2}}\right) d x \approx 1.146$
(b) The volume of the solid of revolution about the x-axis is done with disks:
$V_{x}=\pi \int_{0}^{a}\left(9 \cos ^{2}-e^{2 x^{2}}\right) d x$, where a is the number from part (a).
(c) Since cross sections taken perpendicular to the x-axis are squares, the cross-sectional area of the square occurring at coordinate x is $\left(3 \cos x-e^{x^{2}}\right)^{2}$. Then the volume of the solid described is
$V=\int_{0}^{a}\left(3 \cos x-e^{x^{2}}\right)^{2} d x$, where a again is the number found above.

1: Correct limits in an integral in (a), (b), or (c)
$2:\left\{\begin{array}{l}1: \text { integrand } \\ 1: \text { answer }\end{array}\right.$
$3:\left\{\begin{array}{c}2: \text { integrand and } \\ \text { constant } \\ 1: \text { answer }\end{array}\right.$
$3:\left\{\begin{array}{l}2: \text { integrand } \\ 1: \text { answer }\end{array}\right.$
2. p. 68
(a)

The function is pictured to the left. It has three zeros on $[0,3]$.

With the capabilities of the graphing calculator, the zeros are found to be at

$$
\begin{aligned}
& x=0 \\
& x=0.964 \\
& x=1.684
\end{aligned}
$$

(b) Consider the graph of the derivative of $f: f^{\prime}(x)=\frac{1}{x+1}-2 \sin x \cos x$. This derivative function is nonnegative valued on the intervals (0.0 .398) and ($1.351,3$). Hence f is increasing there.
(c) The absolute maximum and absolute minimum values occur at either a critical point or an endpoint. The first derivative $f^{\prime}(x)=\frac{1}{x+1}-2 \sin$ $x \cos x$ has zeros at $x=0.398$ and $x=1.351$. At these critical points we have $f(0.398)=0.184$ and $f(1.351)=-0.098$. At the endpoints we have $f(0)=0$ and $f(3)=1.366$. Therefore, on the interval $[0,3]$, the function's absolute minimum value is -0.098 and its absolute maximum value is 1.366.

3: three x - intercepts

3: $\left\{\begin{array}{l}1: f^{\prime}(x) \geq 0 \\ 2: \text { answer }\end{array}\right.$

1:identifies critical numbers and endpts as candidates

1: answer
1: justification
3. p. 69
(a)

$$
f(x)=4-x^{2} \quad \Rightarrow \quad f^{\prime}(x)=-2 x
$$

At the point $P\left(p, 4-p^{2}\right)$, the tangent line has a slope of $m=-2 p$. Hence an equation of the tangent line is:

$$
y-\left(4-p^{2}\right)=-2 p(x-p)
$$

This simplifies to $y=-2 p x+p^{2}+4$.

The y -intercept (point Y$)$ is $\left(0, \mathrm{p}^{2}+4\right)$.
The x-intercept (point X) is $\left(\frac{p^{2}+4}{2 p}, 0\right)$.
The area of the triangle is $\mathrm{A}(\mathrm{p})=\frac{1}{2}\left(\mathrm{p}^{2}+4\right)\left[\frac{\mathrm{p}^{2}+4}{2 \mathrm{p}}\right]$
Then $A(2)=\frac{1}{2}(8)(2)=8$.
(b) $A(p)=\frac{\left(p^{2}+4\right)^{2}}{4 p}$.

Then $A^{\prime}(p)=\frac{4 p \cdot 2\left(p^{2}+4\right) \cdot 2 p-\left(p^{2}+4\right)^{2} \cdot 4}{16 p^{2}}=\frac{4 p^{4}+16 p^{2}-p^{4}-8 p^{2}-16}{4 p^{2}}$
$=\frac{3 p^{4}+8 p^{2}-16}{4 p^{2}}$
$=\frac{\left(3 p^{2}-4\right)\left(p^{2}+4\right)}{4 p^{2}}$
The critical numbers of the function A are at $p= \pm \frac{2}{\sqrt{3}}$.
The only critical number in the interval $(0,2)$ is $p=\frac{2}{\sqrt{3}} \approx 1.155$.
$\mathrm{A}^{\prime}(1)<0$ and $\mathrm{A}^{\prime}(2)>0$, therefore by the First Derivative test, $\mathrm{A}(1.155)$ is a local minimum, and since there are no other critical points in the interval $(0,2), A(1.155)$ is the absolute minimum. The domain of A is $(0$, 2]. Since $\lim _{p \rightarrow 0} A(p)=\infty$, there is no maximum and $p=1.155$ is the minimum.

4: $\left\{\begin{array}{l}1: x-\text { intercept } \\ 1: y \text {-intercept } \\ 1: \text { expression for } \\ \text { area of triangle } \\ 1: \text { answer }\end{array}\right.$

5: $\left\{\begin{array}{l}2: A^{\prime}(p) \\ 2: \text { candidates for } \\ \quad \text { minimum } \\ 1: \text { answer }\end{array}\right.$

Exam III
 Section II
 Part B - No Calculators

4. p. 70
(a) $f(x)=x^{3}+p x^{2}+q x \Rightarrow f^{\prime}(x)=3 x^{2}+2 p x+q \Rightarrow f^{\prime \prime}(x)=6 x+2 p$
$\left\{\begin{array}{r}\mathrm{f}(-1)=-8 \\ \mathrm{f}^{\prime}(-1)=12\end{array}\right\} \Rightarrow\left\{\begin{array}{r}-8=-1+\mathrm{p}-\mathrm{q} \\ 12=3-2 \mathrm{p}+\mathrm{q}\end{array}\right.$
When we add these two equations, we obtain $4=2-\mathrm{p}$.
Thus $p=-2$. Substituting this value into one of the equations, we find that $\mathrm{q}=5$.
(b) If the graph of f is to have a change in concavity at $x=2$, then $f^{\prime \prime}(2)=0$ and $f^{\prime \prime}(x)$ changes its sign at $x=2$.
$f^{\prime \prime}(2)=12+2 p=0 \quad \Rightarrow \quad p=-6$
Then $f^{\prime \prime}(x)=6 x-12=6(x-2)$. This does have a sign change at $x=2$.
(c) For f to be increasing everywhere, we must have $f^{\prime}(x)>0$ for all x.

Then $3 x^{2}+2 p x+q>0$ for all x.
$f^{\prime}(x)$ is a quadratic function, opening upward.
$f^{\prime}(x)$ will be positive valued $\Leftrightarrow f$ has no zeros

$$
\begin{aligned}
& \Leftrightarrow \quad \text { the discriminant of } \mathrm{f} \text { is less than } 0 \\
& \Leftrightarrow \quad 4 p^{2}-12 q<0
\end{aligned}
$$

3: $\left\{\begin{array}{l}1: f^{\prime}(x) \\ 1: f(-1) \text { and } f^{\prime}(-1) \\ 1: \text { answer }\end{array}\right.$

3: $\left\{\begin{array}{l}1: f^{\prime \prime}(x) \\ 1: f^{\prime \prime}(2) \\ 1: \text { answer }\end{array}\right.$

3: $\left\{\begin{array}{l}1: f^{\prime}(x)>0 \\ 2: \text { answer }\end{array}\right.$
5. p. 71
(a) $s(6)=\int_{0}^{6} v(t) d t=\int_{0}^{4} v(t) d t+\int_{4}^{6} v(t) d t=5-2=3$

This evaluation is obtained by counting areas.
(b) At $\mathbf{t}=4$, the velocity changes from being positive to being negative. Hence the car's distance from A changes from being in an increasing state to decreasing. That is, the car's direction changes.
(c)

Since the acceleration is the derivative of the velocity, we need
to plot a function whose values are the slopes of the given velocity function.
6. p. 72
(a) $y^{3}-3 x y=2$

Differentiating, we obtain $3 y^{2} \frac{d y}{d x}-3 y-3 x \frac{d y}{d x}=0$.

$$
\begin{aligned}
\frac{d y}{d x}\left(3 y^{2}-3 x\right) & =3 y \\
\frac{d y}{d x} & =\frac{3 y}{3 y^{2}-3 x}=\frac{y}{y^{2}-x}
\end{aligned}
$$

(b) At the point $(1,2), \frac{\mathrm{dy}}{\mathrm{dx}}$ has the value $\frac{2}{4-1}=\frac{2}{3}$.
(b) At the point $(1,2), \frac{\mathrm{d}}{\mathrm{dx}}$ has the value $\frac{2}{4-1}=\frac{2}{3}$.
Therefore the tangent line has the equation $\mathrm{y}-2=\frac{2}{3}(x-1)$.
$y(1.3)=2+\frac{2}{3}(1.3-1)=2.2$
(c) $\frac{d^{2} y}{d x^{2}}=\frac{\left(y^{2}-x\right) \cdot \frac{d y}{d x}-y\left(2 y \frac{d y}{d x}-1\right)}{\left(y^{2}-x\right)^{2}}$

$$
\left.\frac{\mathrm{d}^{2} y}{d x^{2}}\right|_{(1,2)}=\frac{(4-1) \cdot \frac{2}{3}-8 \cdot \frac{2}{3}+2}{9}=\frac{4-\frac{16}{3}}{9}=-\frac{4}{27}
$$

(d) Since $\frac{d^{2} y}{d x^{2}}<0$ at the point $(1,2)$, the graph is concave down and the tangent line lies above the curve. Hence, the point $(1.3,2.2)$ is an
$2:\left\{\begin{array}{l}1: \text { implicit diff } \\ 1: \text { solves for } \frac{d y}{d x}\end{array}\right.$ overestimate.

3 : graph
$3:\left\{\begin{array}{l}1: \text { answer } \\ 2: \text { justification }\end{array}\right.$
$1: \int_{0}^{4} v(t) d t$
3: $1: \int_{4}^{6} v(t) d t$
1:answer
-

